COMPRESSED AIR FILTER ELEMENTS
Product overview

- filtration principles
- adsorption
 - borosilicate micro fibres
 - activated carbon

- quality class (ISO 8573-1)
- sintered brass
 - material

- grade
 - oils
 - 0/1 µm

- catalyst
 - H2

- prefilters
 - P
 - quality class (ISO 8573-1)
 - borosilicate micro fibres
 - hopcalite
 - material

- grade
 - solids:
 - 1
 - oils
 - 2

- prefilters
 - M
 - quality class (ISO 8573-1)
 - steel 1.4404
 - sintered stainless
 - material

- grade
 - solids:
 - 1
 - oils
 - 1

- prefilters
 - N
 - activated carbon
 - A
 - material

- grade
 - solids:
 - 1
 - oils
 - 0,1 µm

- prefilters
 - S
 - quality class (ISO 8573-1)
 - borosilicate micro fibres

- grade
 - solids:
 - 1
 - oils
 - 0,01 µm

- prefilters
 - R
 - quality class (ISO 8573-1)
 - activated carbon
 - A
 - material

- grade
 - solids:
 - 1
 - oils
 - 0,1 µm

www.omega-air.si
Cesta Dolomitskega odreda 10
SI-1000 Ljubljana, Slovenia
info@omega-air.si
F +386 (0)1 200 68 50

OMEGA AIR d. o. o. Ljubljana

www.omega-air.de
Eurotec-Ring 15
D-47445 Moers, Germany
uwe.ohletz@omega-air.de
T +49 2841 39399-57

OMEGA AIR GmbH

www.omega-air.hr
Anićeva 13A
info@omega-air.hr
F +385 (0)1 2371 870
T +385 (0)1 2371 872

OMEGA AIR Zagreb d.o.o.

950121 - 04/2015

COMPRESSED AIR FILTER ELEMENTS
Product overview

Coalescing filter media collects oil and water

Upper end cap holds filter medias together

INTERNAL NONWOVEN LAYER

EXTERNAL STAINLESS STEEL

Lower end cap assures reliable cartridge
filtration media and give them stability.

and filter type it can be made of plastic,
it can be made of plastic, aluminium or

Internal nonwoven layer gives basic
protection of filter media

LOWER END CAP

UPPER END CAP

element provides drainage of oil and water
Drainage madia on outer side of filter

FOAM

particles.
Pleated filter media provides significant
larger surface filter area than wrapped and

PLEATED FILTER MEDIA

filtration media and give them stability.
INNER STAINLESS STEEL MESH

SEALING O-RING

head and filter element.
Ensures reliable tightnes between filter

CLASS

(1) To qualify for a class designation, each size range and particle number within a class shall be met.

X Cp > 10 > 5 > 4

0 As specified by the equipment user or supplier and more stringent than class 1

8 Not specified 0,5 ≤ CW ≤ 5 Not specified Not specified

4 Not specified Not specified ≤ 10.000 ≤ +3 38 ≤ 5 ≤ 4

6 ≤ ±10 50

6 0 < Cp ≤ 5 Not specified Not specified

9 Not specified Not specified Not specified

2 ≤ 400.000 ≤ 6.000 ≤ 100 ≤ -40 -40 ≤ 0,1 ≤ 0,08

°C °F mg/m3 ppm/w/w

function of particle size, d(2)
Pressure dew point
Concentration of total oil(2)
Mass concentration(2)
LIQUID WATER CONTENT(2)
HUMIDITY AND LIQUID WATER(2)
OIL

mg/m3 g/m3

which apply to it.

n°97/23/EC, and found to satisfy
the equipment identified has been
examined against the provisions
of annex III, module H, of the
quality system operated by
the manufacturer for design,
and testing of the pressure
number 0062), attests that
notification (notified body
acting within the scope of its
BUREAU VERITAS S.A.

ISO 9001:2008

CE-PED-H

SUD

Environmental Technology e.V.
by Institute of Energy and

standard ISO 8573-1 is tested

IUTA Germany) in Duisburg-

IUTA

Bureau Veritas Certification

ISO 9001:2008

EXAMINED AGAINST THE PROVISIONS

(2) To be determined by the manufacturer.

(3) To be determined by the user.

NOTES

(1) To be determined by the user.

N°97/23/EC, and found to satisfy

Ljubljana has been audited
System of OMEGA AIR d.o.o.
certified, that Management
Bureau Veritas Certification
ISO 9001:2008 (CE-PED-H)
OZONE PROTECTION

OMEGA AIR d.o.o.

COMPRESSED AIR QUALITY CLASSES ACCORDING TO ISO 8573-1

OMEGA AIR GmbH

OMEGA AIR Zagreb d.o.o.

OMEGA AIR GmbH
COMPRESSED AIR QUALITY CLASSES ACCORDING TO ISO 8573-1

<table>
<thead>
<tr>
<th>CLASS</th>
<th>SOLID PARTICLES</th>
<th>HUMIDITY AND LIQUID WATER</th>
<th>OIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum number of particles per cubic meter as a function of particle size, (d)</td>
<td>Pressure dew point</td>
<td>Concentration of total oil((\text{liquid, aerosol and vapor}))</td>
</tr>
<tr>
<td></td>
<td>(\mu \text{m})</td>
<td>(^{\circ} \text{C})</td>
<td>(^{\circ} \text{F})</td>
</tr>
<tr>
<td>0</td>
<td>(0.1 \mu \text{m} < d \leq 0.5 \mu \text{m})</td>
<td>(-70)</td>
<td>(-158)</td>
</tr>
<tr>
<td>1</td>
<td>(0.5 \mu \text{m} < d \leq 1.0 \mu \text{m})</td>
<td>(-40)</td>
<td>(-40)</td>
</tr>
<tr>
<td>2</td>
<td>(1.0 \mu \text{m} < d \leq 5.0 \mu \text{m})</td>
<td>(-20)</td>
<td>(-39)</td>
</tr>
<tr>
<td>3</td>
<td>(5.0 \mu \text{m} < d \leq 10.0 \mu \text{m})</td>
<td>(0)</td>
<td>(32)</td>
</tr>
<tr>
<td>4</td>
<td>(10.0 \mu \text{m} < d \leq 100.0 \mu \text{m})</td>
<td>(10)</td>
<td>(45)</td>
</tr>
<tr>
<td>5</td>
<td>(100.0 \mu \text{m} < d \leq 1.0 \mu \text{m})</td>
<td>(20)</td>
<td>(50)</td>
</tr>
<tr>
<td>6</td>
<td>(1 \mu \text{m} < d \leq 0.1 \mu \text{m})</td>
<td>(30)</td>
<td>(60)</td>
</tr>
</tbody>
</table>

As specified by the equipment user or supplier and more stringent than class 1.

<table>
<thead>
<tr>
<th>CLASS</th>
<th>SOLID PARTICLES</th>
<th>HUMIDITY AND LIQUID WATER</th>
<th>OIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mass concentration((\text{mg/m}^3))</td>
<td>Liquid water content((\text{g/m}^3))</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(0 < C_p \leq 5)</td>
<td>Not specified</td>
<td>Not specified</td>
</tr>
<tr>
<td>7</td>
<td>(5 < C_p \leq 10)</td>
<td>(C_w \leq 0.5)</td>
<td>Not specified</td>
</tr>
<tr>
<td>8</td>
<td>Not specified</td>
<td>(0.5 < C_w \leq 5)</td>
<td>Not specified</td>
</tr>
<tr>
<td>9</td>
<td>Not specified</td>
<td>(C_w > 5)</td>
<td>Not specified</td>
</tr>
<tr>
<td>X</td>
<td>(C_p > 10)</td>
<td>> 4</td>
<td></td>
</tr>
</tbody>
</table>

(\(\mu \text{m} \)) To qualify for a class designation, each size range and particle number within a class shall be met.

(\(\text{mg/m}^3 \)) At reference conditions: air temperature of 20° C, absolute air pressure of 100 kPa (1 bar), 0 relative water vapor pressure.

ISO 9001:2008

Bureau Veritas Certification certified, that Management System of OMEGA AIR d.o.o. Ljubljana has been audited and found to be in accordance with the requirements of the management system standard ISO 9001:2008.

CE-PED-H

BUREAU VERITAS S.A. acting within the scope of its notification (notified body number 0062), attests that the quality system operated by the manufacturer for design, manufacture, final inspection and testing of the pressure equipment identified has been examined against the provisions of annex III, module H, of the Pressure Equipment directive n°97/23/EC, and found to satisfy the provisions of the directive which apply to it.

IUTA

Filter elements harmony to standard ISO 8573-1 is tested by Institute of Energy and Environmental Technology e.V. (IUTA Germany) in Duisburg-Essen.
Filtration principles

<table>
<thead>
<tr>
<th>Grade</th>
<th>Prefilter</th>
<th>Material</th>
<th>SOLIDS</th>
<th>OILS</th>
<th>MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>15 µm</td>
<td>sintered brass</td>
<td>7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P</td>
<td>3 µm</td>
<td>borosilicate micro fibres</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R</td>
<td>1 µm</td>
<td>activated carbon</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M</td>
<td>0.1 µm</td>
<td>borosilicate micro fibres</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S</td>
<td>0.01 µm</td>
<td>borosilicate micro fibres</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A</td>
<td>activated carbon</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

A² grade adsorption
- activated carbon
- borosilicate micro fibres

H² grade catalyst
- hopcalite
- borosilicate micro fibres

MS² grade molecular sieve
- molecular sieve
- borosilicate micro fibres

I grade prefILTER
- sintered stainless steel 1.4404
- borosilicate micro fibres

Sterile sterilisation
- stainless steel mesh

N grade prefILTER
- stainless steel mesh
Compressed air treatment

Compressed air filter elements

B grade 15 µm
- **PREFILTER** particulate
- **RATING ACCORDING TO ISO 8573-1**
 - Solid particles: Class 7
 - Water: Class -
 - Oils: Class -
- **Operating temperature**: 1.5 - 65 °C
- **Differential pressure (dry)**: 20 mbar
- **Particle retention (nominal)**: 15 µm
- **Particle retention rate ISO**: 95%

High efficient removal of coarse solid particles and bulk liquids from compressed air

Filter media: Sintered INOX 1.4404

Notes: Endcaps of filter series may differ from pictures below.

P grade 3 µm
- **PREFILTER** particulate
- **RATING ACCORDING TO ISO 8573-1**
 - Solid particles: Class 6
 - Water: Class -
 - Oils: Class -
- **Operating temperature**: 1.5 - 65 °C
- **Differential pressure (dry)**: 10 mbar
- **Particle retention (nominal)**: 99.99% (3 µm)
- **Particle retention rate ISO**: 95%

High efficient removal of coarse solid particles and bulk liquids from compressed air

Filter media: Sintered INOX 1.4404

R grade 1 µm
- **PREFILTER** particulate
- **RATING ACCORDING TO ISO 8573-1**
 - Solid particles: Class 3
 - Water: Class -
 - Oils: Class -
- **Operating temperature**: 1.5 - 65 °C
- **Differential pressure (dry)**: 20 mbar
- **Particle retention (nominal)**: 99.9999% (1 µm)
- **Particle retention rate ISO**: 99.8%

High efficient removal of coarse solid particles and bulk liquids from compressed air

Filter media:
- Borosilicate micro fibres
- Hopcalite
- Sintered INOX 1.4404

M grade 0.1 µm
- **GENERAL PURPOSE FILTER** particulate + coalescing
- **RATING ACCORDING TO ISO 8573-1**
 - Solid particles: Class 2
 - Water: Class -
 - Oils: Class 2
- **Operating temperature**: 1.5 - 65 °C
- **Differential pressure (dry)**: 50 mbar
- **Particle retention (nominal)**: 99.9999% (0.1 µm)
- **Particle retention rate ISO**: 99.98%
- **Residual oil content**: <0.1 mg/m³

High efficient removal of coarse solid particles, oil aerosols and water from compressed air

Filter media: Borosilicate micro fibres

PI grade 1 µm
- **PREFILTER** particulate
- **RATING ACCORDING TO ISO 8573-1**
 - Solid particles: Class -
 - Water: Class -
 - Oils: Class -
- **Operating temperature**: 0 - 150 °C
- **Differential pressure (dry)**: 60 mbar

PI grade 20 µm
- **PREFILTER** particulate
- **RATING ACCORDING TO ISO 8573-1**
 - Solid particles: Class -
 - Water: Class -
 - Oils: Class -
- **Operating temperature**: 0 - 150 °C
- **Differential pressure (dry)**: 60 mbar

PIW grade 1 µm
- **PREFILTER** particulate
- **RATING ACCORDING TO ISO 8573-1**
 - Solid particles: Class -
 - Water: Class -
 - Oils: Class -
- **Operating temperature**: 0 - 150 °C
- **Differential pressure (dry)**: 60 mbar

PIW grade 20 µm
- **PREFILTER** particulate
- **RATING ACCORDING TO ISO 8573-1**
 - Solid particles: Class -
 - Water: Class -
 - Oils: Class -
- **Operating temperature**: 0 - 150 °C
- **Differential pressure (dry)**: 60 mbar

High efficient removal of coarse solid particles from process and culinary steam

Filter media: Sintered INOX 1.4404
Compressed Air Filter Elements

Differential pressure (dry) 10 mbar

Operating temperature 0 - 150 °C

Particle retention rate ISO -

NOTE: Endcaps of filter series may differ from pictures below.

PREFILTER

- **ACCORDING TO ISO 8573-1**
- **RATING**
 - **Class**
 - **Solid particles**
 - **Water**
 - **Oils**

CLASSIFICATION
- **Super Fine Filter**
 - particulate + coalescing
- **A - Grade**
 - activated carbon
- **A² - Grade**
 - activated carbon + particulate
- **H² - Grade**
 - catalyst (hopcalite) + particulate

PN5 grade 5 μm

PREFILTER

- particulate

- **RATING ACCORDING TO ISO 8573-1**
- **Solid particles**
- **Water**
- **Oils**

PN25 grade 25 μm

PREFILTER

- particulate

- **RATING ACCORDING TO ISO 8573-1**
- **Solid particles**
- **Water**
- **Oils**

PP grade 3 μm

PREFILTER

- particulate

- **RATING ACCORDING TO ISO 8573-1**
- **Solid particles**
- **Water**
- **Oils**

PR grade 1 μm

PREFILTER

- particulate

- **RATING ACCORDING TO ISO 8573-1**
- **Solid particles**
- **Water**
- **Oils**

Filter Media
- borosilicate micro fibres
- activated carbon granulate, borosilicate micro fibres
- activated carbon
- catalyst (hopcalite)
- activated carbon, adsorption media
- adsorption media
- Hopcalite
- activated carbon, molecualr sieve
- activated carbon, particulate, adsorption media
- particulate + bacteria removal
- particulate + bacteria removal filter
- particulate + coalescing
- activated carbon, stainless steel mesh 1.4301
- acrile fibres, cellulose
- stainless steel mesh 1.4301
- stainless steel mesh 1.4301
- stainless steel mesh 1.4301

Differential Pressure
- 10 mbar
- 60 mbar
- 80 mbar
- 10 mbar
- 60 mbar
- 80 mbar
- 10 mbar
- 10 mbar

Operating Temperature
- 0 - 150 °C
- 1,5 - 65 °C
- 1,5 - 45 °C
- 1,5 - 65 °C

Particle Retention
- 99,9999% (0,01 μm)
- 99,9999% (0,1 μm)
- 99,99% (3 μm)
- 99,9999% (0,01 μm)
- 99,99% (0,1 μm)
- 99,98 %
- 99,98 %

Residual Oil Content
- <0,01 mg/m³
- <0,005 mg/m³

High Efficient Removal
- of coarse solid particles, oil aerosols and water from compressed air
- of oil, hydrocarbons, vapours and odours from compressed air
- of oil vapours and odours from compressed air
- of coarse solid particles, some other substances from compressed air
- of coarse solid particles, bacteria removal filter applications, removal of submicrons vapours and odours from compressed air
<table>
<thead>
<tr>
<th>Grade</th>
<th>Diameter (μm)</th>
<th>RATING ACCORDING TO ISO 8573-1</th>
<th>Filter Media</th>
<th>Operating Temperature (°C)</th>
<th>Differential Pressure (mbar)</th>
<th>Particle Retention (%)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS² grade</td>
<td>0,1</td>
<td>1</td>
<td>Borosilicate micro fibres</td>
<td>15 - 65</td>
<td>10</td>
<td>99,9999% (0,1 μm)</td>
<td>high efficient removal of water vapour from small flows of compressed air - drying</td>
</tr>
<tr>
<td>VACP grade</td>
<td>3</td>
<td>6</td>
<td>Acrylic fibres, cellulose</td>
<td>15 - 65</td>
<td>10</td>
<td>99,999% (3 μm)</td>
<td>high efficient removal of coarse solid particles and bulk liquids from compressed air</td>
</tr>
<tr>
<td>VACM grade</td>
<td>0,1</td>
<td>2</td>
<td>Borosilicate micro fibres</td>
<td>15 - 65</td>
<td>30</td>
<td>99,9999% (0,1 μm)</td>
<td>high efficient removal of coarse solid particles and bulk liquids from compressed air</td>
</tr>
<tr>
<td>VAC grade</td>
<td>3</td>
<td>2</td>
<td>Borosilicate micro fibres</td>
<td>15 - 65</td>
<td>30</td>
<td>99,98%</td>
<td>high efficient removal of coarse solid particles and bulk liquids from compressed air</td>
</tr>
<tr>
<td>PM grade</td>
<td>0,1</td>
<td>1</td>
<td>Borosilicate micro fibres</td>
<td>15 - 120</td>
<td>50</td>
<td>99,9999% (0,1 μm)</td>
<td>high efficient filtration in process industry applications, removal of submicrons particles, bacteria removal filter</td>
</tr>
<tr>
<td>PS grade</td>
<td>0,01</td>
<td>1</td>
<td>Borosilicate micro fibres</td>
<td>15 - 120</td>
<td>80</td>
<td><0,0005 mg/m³</td>
<td>high efficient filtration in process industry applications, removal of submicrons particles, bacteria removal filter</td>
</tr>
<tr>
<td>PA grade</td>
<td>0,01</td>
<td>1</td>
<td>Activated carbon</td>
<td>15 - 45</td>
<td>80</td>
<td><0,0005 mg/m³</td>
<td>high efficient removal of oil, hydrocarbons, vapours and odours from compressed air</td>
</tr>
<tr>
<td>VSF grade</td>
<td>0,01</td>
<td>1</td>
<td>Activated carbon</td>
<td>15 - 65</td>
<td>80</td>
<td>99,9999% (0,1 μm)</td>
<td>high efficient sterile filtration of compressed air, process air and technical gases</td>
</tr>
</tbody>
</table>
Compressed Air Filter Elements

- **Compressed air** and bulk liquids from compressed air
- Compressed air treatment

Particle Retention Rate ISO

- **PREFILTER**
- Particulate
- TO ISO 8573-1

Specifications

<table>
<thead>
<tr>
<th>Class</th>
<th>Particle retention (nominal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>99.99% (3 μm)</td>
</tr>
<tr>
<td>2</td>
<td>99.999% (0.1 μm)</td>
</tr>
</tbody>
</table>

- Differential pressure (dry) 10 mbar
- Operating temperature 1.5 - 65 °C

Filter Media

- Acrile fibres, celulose
- Borosilicate micro fibres

Applications

- Process and culinary steam

CKL

Condensate Separator

- High efficient removal of bulk liquids from compressed air
- Operating pressure 16 bar
- Operating temperature 1.5 - 65 °C
- Efficiency > 98%

Specifications

<table>
<thead>
<tr>
<th>Class</th>
<th>Particle retention (nominal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>99.9999% (0.01 μm)</td>
</tr>
</tbody>
</table>

- Differential pressure (dry) 60 mbar
- Operating temperature 0 - 150 °C

Ms grade 0,1 μm

- **MICROFILTER**
- Particulate
- RATING ACCORDING TO ISO 8573-1

Specifications

<table>
<thead>
<tr>
<th>Solid particles</th>
<th>Water</th>
<th>Oils</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 2</td>
<td>Class -</td>
<td>Class 2</td>
</tr>
</tbody>
</table>

- Filter media: Borosilicate micro fibres
- Operating temperature: 1.5 - 65 °C
- Differential pressure (dry): 10 mbar
- Particle retention (nominal): 99.99% (3 μm)
- Residual oil content: <0.1 mg/m³

Ms grade 0,01 μm

- **MICROFILTER**
- Particulate
- RATING ACCORDING TO ISO 8573-1

Specifications

<table>
<thead>
<tr>
<th>Solid particles</th>
<th>Water</th>
<th>Oils</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1</td>
<td>Class -</td>
<td>Class 1</td>
</tr>
</tbody>
</table>

- Filter media: Borosilicate micro fibres
- Operating temperature: 1.5 - 65 °C
- Differential pressure (dry): 10 mbar
- Particle retention (nominal): 99.9999% (0.01 μm)
- Residual oil content: <0.005 mg/m³

N5 (25) grade 5;25 μm

- **PREFILTER**
- Particulate
- RATING ACCORDING TO ISO 8573-1

Specifications

<table>
<thead>
<tr>
<th>Solid particles</th>
<th>Water</th>
<th>Oils</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class -</td>
<td>Class -</td>
<td>Class -</td>
</tr>
</tbody>
</table>

- Filter media: Stainless steel mesh 1.4301
- Operating temperature: 0 - 65 °C
- Differential pressure (dry): 10 mbar

M grade 0,1 μm

- **MICROFILTER**
- Particulate + coalescing
- RATING ACCORDING TO ISO 8573-1

Specifications

<table>
<thead>
<tr>
<th>Solid particles</th>
<th>Water</th>
<th>Oils</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 2</td>
<td>Class -</td>
<td>Class 2</td>
</tr>
</tbody>
</table>

- Filter media: Borosilicate micro fibres
- Operating temperature: 1.5 - 120 °C
- Differential pressure (dry): 30 mbar
- Particle retention (nominal): 99.99% (0.1 μm)
- Residual oil content: <0.1 mg/m³

S grade 0,01 μm

- **MICROFILTER**
- Particulate + coalescing
- RATING ACCORDING TO ISO 8573-1

Specifications

<table>
<thead>
<tr>
<th>Solid particles</th>
<th>Water</th>
<th>Oils</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1</td>
<td>Class -</td>
<td>Class 1</td>
</tr>
</tbody>
</table>

- Filter media: Borosilicate micro fibres
- Operating temperature: 1.5 - 70 °C
- Differential pressure (dry): 60 mbar
- Particle retention (nominal): 99.9999% (0.01 μm)
- Residual oil content: <0.0005 mg/m³

A grade

- **ADSORPTION**
- Activated carbon
- RATING ACCORDING TO ISO 8573-1

Specifications

<table>
<thead>
<tr>
<th>Solid particles</th>
<th>Water</th>
<th>Oils</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class -</td>
<td>Class -</td>
<td>Class -</td>
</tr>
</tbody>
</table>

- Filter media: Activated carbon, Borosilicate micro fibres
- Operating temperature: 1.5 - 65 °C
- Differential pressure (dry): 60 mbar
- Residual oil content: <0.005 mg/m³
Structure of typical filter element

UPPER END CAP
Upper end cap holds filter media together in compact form. Depending on application and filter type it can be made of plastic, aluminium or stainless steel.

INTERIOR NONWOVEN LAYER
Internal nonwoven layer gives basic protection of filter media.

COALESCENT FILTER MEDIA
Coalescing filter media collects oil and water aerosols.

EXTERNAL STAINLESS STEEL MESH
Stainless steel expanded mesh supports filtration media and gives them stability.

LOWER END CAP
Lower end cap assures reliable cartridge fitting and binding of filter media. Depending on application and filter type it can be made of plastic, aluminium or stainless steel.

SEALING O-RING
Ensures reliable tightness between filter head and filter element.

INNER STAINLESS STEEL MESH
Stainless steel expanded mesh supports filtration media and gives them stability.

PLEATED FILTER MEDIA
Pleated filter media provides significant larger surface filter area than wrapped and lower pressure drop. This layer removes solid particles.

FOAM
Drainage media on outer side of filter element provides drainage of oil and water to lower sections of filter.